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HARMONIC AND RELATIVELY AFFINE MAPPINGS

KENTARO YANO & SHIGERU ISHIHARA

The theory of harmonic mappings of a Riemannian space into another has
been initiated by Eells and Sampson [2] and studied by Chern [1], Goldberg
[11, {31, T. Ishihara [3], [5] and others.

In this paper, we study projective and affine mappings of a manifold with
symmetric affine connection into another and harmonic and relatively affine
mappings of a Riemannian space into another.

1. Differentiable mappings of a manifold with symmetric affine
connection into another

Let (M, F) be a manifold of dimension » with symmetric affine connection
P, and (N, 7) a manifold of dimension p with symmetric affine connection 7,
where 1, p > 2. Let there be given a differentiable mapping f: M — N which
we denote sometimes by f: (M, V) — (N, F). Manifolds, mappings and geo-
metric objects which we discuss in this paper are assumed to be of differen-
tiability class C. Take coordinate neighborhoods {U; x*} of M and {U, y} of
N in such a way that f(U) C U, where (x*) = (x}, %, - - -, x") and (y*) = (O,
y*, - -+, y?) are local coordinates of M and N respectively. The indices 4, i, j,
k,l,m,r,s,t run over the range {1,2, - - -, n}, and the indices , 8,7, 9, 4, g, »
the range {T, 2, -+, p}. The summation convention will be used with respect
to these two systems of indices. Suppose that f: (M, F)— (N, F) is represented
by equations

(1. yo= Yy xt e, x7)
with respect to {U, x*} and {U, y*}. We put
(1.2) A5 =0y (X, - um)

where 9; = 9/dx*. Then the differential df of the mapping f is represented by
the matrix (A4,%) with respect to the local coordinates (x*) and (y*) of M and
N.

When a function p, local or global, is given in N, throughout the paper we
shall identify ¢ with the function pof induced in M. We denote by I'}; the
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components of the affine connection ¥ in M, and by [7;; those of the affine
connection 7 in N.

In this and the next sections, X, Y and Z denote arbitrary vector fields in M
with local expressions X = X”3,, Y = Y*3, and Z = Z"3, respectively. Then
(A,~X"Ya,, where 3, = 6/0y*, is the local expression of the vector field (dH)X
defined along f(M). If we put in U

(1.3) A, =r;A”,
where
(1.4) ViAs =047 + ', A7A7 — T'LA”

then (A4,;"X’Y"%3, is the local expression of a vector field B defined along f(M),
and 4, = A,”.

Consider a curve 7: [ — M in M, [ being an interval, and denote by 7 =
fey: I — N the image of y by f. When 7 is locally represented by x* = x*(z),
t being a parameter belonging to 7, 7 is so by y* = y*(x*(1)). If y satisfies

dix* dx? dxt dx*
il T Al St aiucidp ') hetadl
dr + L dt dt a( ),dt

with a certain function «(¢) of ¢, then 7 is called a path of (M, V). It is easily
seen that the above equations can be reduced to '

axt o dxd dxt
dr dt dt

by a suitable change of the parameter ¢. In this case y is called a path with
affine parameter t. A path in N and the affine parameter on this path will be
similarly defined.

Now, using y* = y*(x*(#)), (1.3) and (1.4), we find

ay

Y L e YAy
dar’

bl g

d*x* dxJ dx? dxJ dx?
1.5 “y 4y n A
(1.5 " dr dt ) + A

RN ol il at” ar
a di
W-e assume that an arbitrary path in (M, /) is mapped by f into a path in
(N, V7). Such a mapping f is said to be projective. Under this assumption, we
have from (1.5)
ay~ dx? dxt
1)-=2— — A"'ia“”‘— -
8 ()dt Todt dt
for any path y: x* = x*(z) in (M, "), 8(r) being a certain function of ¢. Thus,
7 being arbitrary, we find 34 ,°&" = A4,;,"£7&" for any direction & = £3, at any
point of M, from which we conclude that
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(1.6) At = pAfS+ pAS

for some local tunctions p; . U, which are the components of a 1-form in M.
The converse being evident, v e have

Proposition 1.1. In order for a mapping {: (M,V) — (N, V) to be projec-
tive, it is necessary and sufficient that A ,;* has the form (1.6).

We next assume that an arbitrary path in (M, F) is mapped by f into a path
in (N, 7) with the affine parameter preserved. Such a mapping f is said to be
affine. Under this assumption, we have from (1.5)

LAXTdxt
(1.5) A e
for any path y: x* = x*(z) in (M, ). Thus, y being arbitrary, we have A ,,°¢7¢?
= 0 for any direction & = £"3, at any point of M, from which we conclude
that 4, = 0. The converse being evident, we have
Proposition 1.2. In order for a mapping f: (M, V) — (N, F) to be affine, it
is necessary and sufficient that A, = 0.

2. Difterentiable mapping of a Riemannian space into another

Let (M, g) and (N, &) be Riemannian spaces of dimensions n and p respec-
tively. Let there be given a mapping f: M — N denoted sometimes by f: (M, g)
— (N, g). We denote by g;; the components of the Riemannian metric g in M,
and by g,, those of the Riemannian metric g in N. The Christoffel symbols
formed with g;; and g,, are denoted by {]hl} and {:8

noting by F the affine connection determined by {ﬁ} and by F that determined

} respectively. Thus, de-

a . R %
by {rﬁ}’ we can regard f as f: (M, ) — (N, ).

i we put
2.1) g = g, A;Af,
then g% are the components of the tensor g* = f*g induced in M from g by
f. For g* = pg, f: (M,g) — (N, g) is said to be conformal, homothetic or
isometric according as the function p is positive, constant or equal to 1.
Differentiating (2.1) covariantly, we find

2.2) V85 = Dijs + Dyij

where we have put
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(2.3) Dyj = Ay AS8,; -
Changing indices in (2.2), we obtain

(2.4) Vg = Djus + Dy

(2.5) Vigf, = Dix; + Dijr «
Forming (2.2) + (2.4) — (2.5), we find

2.6) Dy = 3 gk + Vigk — Vgl

where we have used D;;; = D;; which is a direct consequence of A, ;* = A4,,".
When Fg* = 0, that is, when ;g% = 0 is satisfled, f: (M, g) — (N, g) is said
to be relatively affine (see [4]). Since we can see from (2.2) and (2.6) that
Vyg¥, = 0 and Dy;; = O are equivalent, we now have

Proposition 2.1. A mapping f: (M, g) — (N, g) Is relatively affine if and
only if Dy;; = 0, ie., if and only if A,7A4g,, = 0.

Thus any affine mapping is relatively affine.

The conditions V/g* = 0 and g* = p’ imply o* = const. Thus we have

Proposition 2.2. If a mapping f: (M, g) — (N, g) is relatively affine and at
the same time conformal, then it is homothetic.

1t is easily seen that the rank of the mapping f: (M, g) — (N, ), i.e., the
rank of (4,7) is equal to the rank of (g¥) at each point of M. If the mapping f
is relatively affine, then Fg* = O which implies that g* is of constant rank m.
Therefore, if f is relatively affine, then f is of constant rank m. Assume that f
is relatively affine and of constant rank m < n, and for any point p of M put
D, ={X eT,(M)|(df),X = 0}, which is a subspace of dimension n — m in
the tangent space 7 ,(M) of M at p. Therefore the correspondence D: p — D,
defines an (n — m)-dimensional distribution D in M, which is called the vertical
distribution. It is easily verified that a vector field X belongs to the vertical
distribution D if and only if 4,2X* = 0, or equivalently, if and only if g£X* =
0. By considering such a vector field X and differentiating 4,°X* = O covari-
antly, we then obtain A4 ,,°X* + A4,°F ;X% = 0. Thus transvecting A4,°g,, to this
equation and using Dy ;; = 0, we have giF ;X' = 0, i.e., (df)(FyX) = 0. Con-
sequently, we arrive at )

Proposition 2.3. Let a mapping f: (M, g) — (N, g) be relatively affine. If
M is connected, then f is of constant rank m. When 0 <m < dimM = n, the
vertical distribution D is of dimension n — m and parallel.

As a corollary to Proposition 2.3, we have

Proposition 2.4. Let f: (M, g) — (N, @) be relatively affine. If (M,g) is a
connected and irreducible Riemannian space, then f is either of rank n(=dim M)
or a constant mapping.

We now put
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2.7) A* = gﬁ_Ajz-“ ,

where (g7%) = (g;;)"'. Then the vector field T with components 4~ defined
along f(M) is called the tension field of the mapping f: (M, g) — (N, g). It is
well known that f: (M, g) — (N, ) is harmonic if and only if T = 0, i.e., if
and only if 4° = 0 (see [2]).

Consider the divergence of the vector field with local expression
(g"AA%g )3, in M. We then obtain

Vi(ghAsA?g,) = ATA’g,, + A7 (V1 A)g"8,,
where we have put
(2.8) 7A" = 8.4 + {‘}}Ai’Aﬁ .
i

Thus we have
Proposition 2.5. A4 mapping f: (M, g) — (N, g) is harmonic if M is com-
pact and VT = 0 which means V,A* = 0.

3. Laplacian of || df ||

We shall compute Laplacian of ||df|} for later use. We now put in U

3.0)  Fed, = ded, {"‘}A 4 {’”}Am—" - {’"}A e
3. %y k],'l'nglnj ki kil

Then (F,A,,"X*Y7Z%3, is the local expression of a vector field defined along
f(M). Taking account of (1.3), (1.4) and (3.1), we obtain the following formula
of Ricci-type:

(3.2) VA;VJ'A[“ — VijAia = Rﬁrﬁ“AkaAjYAiﬁ — Rkjih.Aha s

where R, ;" and R, ;" are the components of the curvature tensors of g and g
respectively. We are now going to compute Laplacian of ||df|’. We then have

sd|ldff = 38"V (APA,787°85.)

(3.3) ) ; 3 ,
= glk(VleAjp)A 87" 8se + IBIF,

where

(3.4) IBIF = AufA ;885 g, -

Thus using (3.2) and putting R,,;, = R;,,’¢..,» from (3.3) we obtain
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sd || dfIf = (V;A%)A°87"8z0 + (1B

3.5) N g .
( + RérﬁaALgAirAkﬁAjaglkgﬁ + Rikgfjg” »

where R;” = R;,g"* are the mixed components of the Ricci tensor of (M, g) and
V7 ;A< are defined by (2.8). Thus taking account of (3.5) we have
Lemma 3.1. For a harmonic mapping f: (M, g) — (N, &), we have

(3.6) $4||df|" = || BIf + R4 AJA A" g™ + R g’ .

Let e, - - -, e, be n orthonormal vectors at each point of (M, g) such that
(3.7 8ji = €nimi T+t €mslmyi
(3.8) g5 = Aewewi + -+ Al i 5

where e, are the components of e,,, and e,,; = e, g,;. Then we find

If we now put & ;, = (df)e,,,, then &, has components of the form e ,“=A4,%e,’.
Therefore we get

R; 5. A AT APA 8 8T = 35 Ry uein’e e e
TH#S
and hence
(3.10) R.snaaALinrAk'aAj“nggﬁ = — 2,084, 8:)AA ,
rES

where (X, Y) denotes the sectional curvature of (N, g), X and ¥ being any
two linear independent vectors at any point of (N, g).
On the other hand, we can easily find

(3.11) S A ==Y (A — D+ nn — DI,

T¥S

where we have put

>0
Il

(3.12) %ul b 4020,

n is sometimes denoted by
(3.13) Trace g* = ni = glg’* > 0 .

We here consider the following condition :
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(C) There is a constant ¢ such that ¢ > 3(X,Y) for any two linearly inde-
pendent vectors X and Y at any point of (N, g).
Then using (3.10) and (3.11) we obtain

(3.14) R, AJA7ASA g5 > ¢ T (3 — A — n(n — ek,

when condition (C) is satisfied.
Next, using (3.7) and (3.8), we have

(3.15) R/ gkg’ = A(Reqjeq)) + -+ + L(Rueyyen) ,

where R;; = R g, are the components of the Ricci tensor of (M, g). Assume
M to be compact and put

(3.16) L = minR;A474%,
n

where A = A”"3, runs over the unit sphere bundle over (M, g). Then by (3.15)
and (3.16) we find

(3.17) thg;figji = ri,

and use of (3.14),(3.17) and Lemma 3.1 thus gives
Lemma 3.2. For a harmonic mapping {: (M, g) — (N, g) we have

(3.18) LAWdfIF = |BIE + ¢ 3 Qs — D* + nln — Ve + 1,
when M is compact and condition (C) is satisfied.

4. Theorems

First we shall give some remarks. If |B|? = 0, then we have B = 0 which
means that f: (M, g) — (N, g) is affine. If 4, = ... = A, = A, then g* = 2g,
which means that {: (M, g) — (N, g) is conformal when 1 # 0 everywhere and
that f is a constant mapping when 1 = 0 everywhere and M is connected. Thus,
if [B|f =0and 4 = --- = 4,, and M is connected, then f is a homothetic or
constant mapping, because of Proposition 2.2. Consequently from Lemma 3.2
we have

Theorem 4.1. Let f: (M,g) — (N,g) be a harmonic mapping of a
Riemannian space (M,g) of dimension n into another Riemannian space
(N, g), and assume M to be compact and connected. Then

(i) f:(M,g) — (N, g) is a constant or homothetic mapping of rank n
everywhere, if (M, g) has positive definite Ricci tensor and there is a constant
¢ > Q such that ¢ > &, & being the sectional curvature of (N, g), and the fol-
lowing condition is satified .
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(Ap Trace g* < ot

where r is defined by (3.16);
(1)) f:(M,g) — (N, 8) is a constant mapping, if the following condition is
satisfied :

Ay @ < 0 and (M, g) has positive definite Ricci tensor,

In case (i) of Theorem 4.1, if dim M = n = dim N, then f is a regular and
homothetic mapping of (M,g) onto a connected component of (N, g); if
dimM = n < dim N, then f: (M, g*) — (N, g) is an isometric immersion,
which is totally geodesic, and g* = p°%¢ with constant p* > 0. Thus, in case (i)
of Theorem 4.1 if (¥, g) is a sphere (S?, g,) of constant curvature, then (M, g)
is necessarily a sphere (S, g,) of constant curvature.

We now assume that r = 0 and & < 0. Using (3.10) and (3.17), from Lemma
3.1 we have

4 \df|P > (| BIf + R g8’ > |1 B .
Thus, if M is compact, then R/ g};g’¢ = 0, which and (3.15) imply
4.1) A(Rjeqe)) + -+ L(Rjeq'eq’) =0.
Hence it follows from (4.1) that
4.2) A(Rje7e)) =0, (s=1,2,-.-,n),

since 4,(R;;e,7¢e,") > 0. (4.2) means that the Ricci tensor of (M, g) is of rank
< n — m when f is of rank m everywhere. Consequently taking account of
Proposition 2.3 we obtain

Theorem 4.2, Let f: (M,g) — (N,g) be a harmonic mapping of a
Riemannian space (M, g) into another Riemannian space (N, g), and assume
M to be compact and connected. Then either f is an affine mapping of constant
rank m > 0 and the Ricci tensor of (M, g) is of rank < n — m, or f is a con-
stant mapping, if the following condition is satisfied

(A,) 7<0, and (M, g) has positive semi-definite Ricci tensor and r = 0, where
r is defined by (3.16). In this case, Trace g* is necessarily constant.

In Theorem 4.2, if (M, g) is connected and irreducible, then f is a constant
mapping because of Proposition 2.4 if f is of rank n everywhere and (N, g)
is a flat torus, then (M, g) is also a flat torus, and the isometric immersion
f: (M, g*)— (N, g) is totally geodesic when dim M < dim N.
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